
D-A132 874 TREGRM-83 REPORT AND USER'S MRNtJAL(U) COLORADO UNIY RT i/i
BOULDER DEPT OF COMPUTER SCIENCE G Mi CLEMM JAN 83
CU-CS-249-83 ARO-15074.15-MA DRAA29-78-G-0046

UNCLASSIFIED F/G 9/2 N

IL

1III.8

1111=2-

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

* Co UNIVERSITY OF COLORADO

TREGRM-83 Report as1d l.Ie Nr~Wi1

N by

Geot frey M. CieiRW
Department of Colipiit(r Scicrutrt-

University of Colorado at uoulder

Boulder, Cl orado 803u9

CU-CS-249-83 Janu iry 1983

DEPARTMENT OF COMPUTER SCIENCE
CAMPUS BOX 430

:-'- UNIVERSITY OF COLORADO, BOULDER

ji. BOULDER, COLORADO 80309
Technical Report

:.L.7,

TREG?,M-83 Report and User's Manual

by

Geoffrey M. Clemm
Department of Computer Science

University of Colorado at Boulder
Boulder, Colorado 80309

CU-CS-249-83) January 1983

INTERIM TECHNICAL REPORT
U. S. ARMY RESEARCH OFFICE

CONTRACT NO. DAAG29-78-G-0046

Approved for public release;
Distribution Unlimited

7- _..-0

:4I

"-4

THE FINDINGS IN THIS REPORT ARE NOT TO
BE CONSTRUED AS AN OFFICIAL DEPARTMENT

OF THE ARMY POSITION, UNLESS SO
DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

We acknowledge U. S. Army Research support
under contract no. DAAG29-78-G-0046

and National Science Foundation support
under grant no. MCS77-02194

U -." # "2 _ °'t ""-_ " "

U.;:C Ias, i fi' d I
SECURITY CLASSIFICATION OF THIS PAGE (When [)et Vrafered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

- 15074.15-MA 1, .013 _ 2- 7

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
TREGRM-83 Report and User's Manual

6. PERFORMING ORG. REPORT NUMBER

7. AUTNOR() 8. CONTRACT OR GRANT NUMBER(*)

Geoffrey M. Clemm DAAG29 78 G 0046

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

University of Colorado
Boulder, CO 80309

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Research Office Jan 83
Post Office Box 12211 13. NUMBER OF PAGES
Research Triangle Park, NC 27709 35

14. MONITORING AGENCY NAME & AOORESS(I dilferent from Controlllng Ofice) IS. SECURITY CLASS. (of this report)

Unclass ified
ISo. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of Itle Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the eeract entered In Block 20, II different from Report)

IS. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are those of theauthor(s) and should not be construed as an official Department of the Army .
position, ,olicy, or decision, unless so designated by other documentation

IS. KEY WORDS (Continue on reveree side It neceeary and idenify by block number)

programming languages
computer programs
compilers
object code

M". AST'RACT (-CaWtI m rvmet i enle.o and #dewnihfy by block numb')

TREGRM is a lanquaqe for specifying the creation of parse trees for any current
programming language, including FORTRAN. This report describes the TREGRM
language, a compiler for the language, and an interpreter for the resulting @4object code. The interpreted object code, in conjunction with a lexical analyzel
forms a syntactic analyzer that takes as input a stream of characters and produccs
as output a parse tree. ihe compiler and interpreter are designed for porta-
bility. Both are written in ANSI FORTRAN (1966) supplemented by a small number
of short machine deoendent subroutines. Inridad IS a TRER ornara the

D ' 1FO"' , 7a " or I 000 -O t " - T EDO F!NV SS is 0 F,"
143 E" UNCLASSIFIED-

SECURITY CLASSIFICATION OF THIS PAGE (When Dee Enlered)

*01

CONTENTS

INTRODUCTION .. 1

THE LANGUAGE 2..2

Lexical Analyzer Interface 3 0

Reserved Word Specification 4

Node Names ... 5

Rules .. 6

TREGRM Regular Expressions 8

Tree-Building Actions 10

THE COMPILER .. 11

USING THE COMPILER 13

THE STANDARD DRIVER 14

Appendix A Compiler machine dependencies 18

Appendix B Standard Driver Machine Dependencies 20

Appendix C Examples of TREGRM Programs 21

TREGRM ... 22

FORTRAN -77 ... 24

9

Abstract

,,TREGRM is a language for specifying the creation of
parse trees for any current programming language, including
FORTRAN. This report describes the TREGRM language, a
compiler for the language, and an interpreter for the
resulting object code. ' The interpreted object code, in
conjunction with a lexical analyzer, forms a syntactic
analyzer that takes as inl3ut a stream of characters and
produices as output a parse tree. The compiler and
interpreter are designed for portability. Both are written
in ANSI FORTRAN -0:96 6)R supplemented by a small number of
short machine dependent subroutines. Included is a TREGRM
program describing the syntax of FORTRAN-77.

j

1. INTRODUCTION

-' The first phase of the analysis of a computer program
- is lexical analysis, where the source text is broken up into

the words or "tokensi of the programming language. The
second phase is "syntactic analysis" or"parsing", where
structure of the program is determined.

The result of parsing is often a sequence of calls to a
semantic routine with a "reduction number" or *"action
numberak-as the argument. To provide a more structured
interface between the syntactic analysis and semantic
analysis of a program, a parse tree can be created, where
the parse tree is a' flattened"' (simplified) version of the
derivation tree for that program. To support the production
of parse tree generators, the TREGRM System was developed.
The TREGRM system consists of a language, a compiler for the
language, a parser generator, and an interpreter for the
object code produced by the TREGRM compiler and the parser
generator. The TREGRM compiler was designed to allow easy
retargeting to different lexical analyzer and parser
generators. Currently, the compiler expects the lexical
analyzer to be one produced by the FSCAN [1] system, and the
parser generator to be one produced by the LR parser
generating system [23. Versions of the compiler that target
the CLEMSW [3] and YACC[4] parser generating systems are
also available.

Accession For

NTIS GPA&I
DTIC TAl -\

TTh

Jutf4 t

LA _F

r22

-2-

2. THE LANGUAGE

The TREGRM language (henceforth referred to simply as
"TREGRM") was designed to allow the specification of a
complex parse tree generator in as concise and
understandable a manner as possible.

A TREGRM program consists of three sections, with an
optional fourth section. The required sections specify the
interface to the lexical analyzer, the node names for the
parse tree, and the rules for building the parse tree. The
optional section specifies reserved words that are to be
screened out of tokens from the lexical analyzer, and is
placed following the lexical analyzer interface section.

i

-..

- - 3- -

-3-

2.1. Lexical Analyzer Interface
.[Syntax

The lexical analyzer interface section consists of the
keyword, 'SCANNER', followed by a sequence of token
translation rules. Each token translation rule contains a
TREGRM terminal name and an FSCAN token name, separated by
an equals sign (=). The FSCAN token name is the name of a
token as specified in the 'TOKENS' section of an FSCAN
program, without any enclosing quote marks. The TREGRM
terminal name is a sequence of characters enclosed in either
single or double quotes. Single (double) quotes specify the
terminal to be a "deleted-terminal" ("kept-terminal"). A
kept-terminal translation rule also contains a node name,
which follows the FSCAN token name, separated by a double
arrow (=>).

Example

SCANNER
"HOLLERITH CONSTANT" = HCONST => "HCNODE"
"VARIABLE NAME" = NAME => "NMNODE"
' (' LPAREN

RPAREN

Semantics

The token translation rules specify the mapping from
the tokens, as produced by the lexical analyzer specified by
the FSCAN program, to the terminals, as used in the TREGRM
program. There must be one token translation rule for each
terminal used in the parse tree rules of the TREGRM progran.
Some of the tokens in the token stream are "variable"
tokens, such as tokens of type "identifier" or "integer" (as
opposed to tokens of type "equals sign" or "if-keyword").
These tokens contain a sequence of characters that are the
"value" of that token. These values must be preserved in the
parse tree if the parse tree is to contain the information
needed for most semantic processing. To store these values,
leaf nodes are created for each variable token, where the
leaf node contains a pointer to the appropriate character
sequence value. Such variable tokens are indicated as
kept-terminals in a kept-terminal token translation rule.
The node name of the leaf for tokens of that type is
specified in the kept-terminal token translation rule.

-4-

2.2. Reserved Word Specification

'When developing a new language, it is often the case
that the lexical analysis can be specified satisfactorily
very early in in the development process, except for the
exact set of reserved words, operators, and delimiters to be
recognized. To support this, TREGRM provides an optional
section where these reserved words can be specified.

Syntax

The reserved word specification section consists of the
keyword, 'SCREENER', followed by a sequence of deleted-
terminals enclosed in parentheses, and a sequence of token
names also enclosed in parentheses. The two sequences are
separated by an equals sign.

E.x ample

SCREENER
('BEGIN' 'END' 'PROGRAM' '.:' +') = (NAME OPRATR)

Semantics

At runtime, the value of each token whose token name is
one of those specified in the SCREENER section is examined
before it is translated according to the token translation
rules. If the sequence of characters is identical to the
sequence of characters in the name of a deleted-terminal in
the SCREENER section, the token will be translated to be
that deleted-terminal, rather than the terminal specified in
the token translation rule for that token name.

0O

'ii -5-

2.3. Node Names

.Sntax

The node name section consists of the keyword, 'NODES',
followed by a sequence of node names, where each node name
consists of a sequence of characters enclosed in double
quotes. To allow the use of node names directly in FORTRAN
programs using the parse tree produced, the sequence of
characters should be a legal FORTRAN identifier.

Example

NODES
"NAMEND" "INTGND" LABLND"
"PLUSND" "EQULND"

Semantics

All node names that will be used in the parse tree must
be declared in the node name section. This includes the
names of leaf nodes specified in the token translation
rules. The name of a node will be indicated in the parse
tree by a positive integer, where the i'th node name in the
node name list will be assigned the number, i. One of the
tables produced by the TREGRM compiler is a FORTRAN block
data containing a common block whose elements are the node
names as declared in the node name section. These variables
are initialized to the appropriate values in the block data
subprogram.

. .°

-6

2.4. Rules

Syntax

The rules section consist of the keyword, 'RULES',

followed by a sequence of TREGRM rules, where each rule is
terminated by a semicolon. As in a BNF rule, the left side
of a TREGRM rule is a nonterminal while the right side is a
sequence of alternatives. Each alternative may have an
associated tree-building action, and an alternative, rather
than being only a sequence of terminals and nonterminals,
may contain any of a variety of operators, in the style of
regular expressions, as well as parentheses for grouping.
Each alternative is preceded by a single-right-arrow (->).
The optional tree-building action is placed at the end of
the corresponding alternative and is preceded by a double-
right-arrow (=>

Example

RULES
PROGRAM

- tregrm reg exprn_1 => action 1
-> tregrm-reg-exprn_2
-> tregrmreg exprn_3 => action 2

STATEMENT
-> tregrmreg_exprn 4 => action 3

Semantics

The nonterminal of the first rule in the rules section
is the goal symbol of the grammar. Each TREGRM rule is
expanded into a sequence of one or more standard BNF rules.
These BNF rules are generated in a format appropriate to the
expected input of a parser generator. In addition, a table
of tree building actions is generated, with one action for
each possible reduction in the generated BNF grammar.
During execution of the generated parser, each reduction

causes an ordered sequence of zero or more nodes to be
associated with the nonterminal corresponding to the
alternative being reduced. The result of the parsing is the
the sequence of nodes associated with the nonterminal that
is the goal symbol of the grammar.

If there is no tree-building action for a given
alternative, the sequence of nodes associated with the
nonterminal for that alternative is simply the ordered
concatenation of the nodes associated with the sequence of
nonterminals that make up the right side of the alternative.

If there is a tree-building action for a given
alternative, a new node is generated whose name is the node
name specified in the tree-building action, and whose sons

7-

are the ordered concatenation described above. The node
associated with the nonterminal of the alternative is the
newly generated node.

-8-

2.4.1. TREGRM Regular Expressions

2.4.1.1. Atomic units

The atomic units of an TREGRM regular expression are
terminals and nonterminals.

2.4.1.1.1. Terminals

Syntax

A terminal is either a "kept-terminal" or a "deleted-
terminal." A kept-terminal is a sequence of characters
enclosed in double quotes (") while a deleted-terminal is a
sequence of characters enclosed in single quotes ('). If a
sharp (#) appears in the string, the sharp is ignored and
the immediately following character is treated as the next
character of the string, even if that character is a quote
or a sharp.

Examples

"NAME" ' (' ': "INTEGER"

Semantics

A deleted-terminal simply indicates a terminal symbol
that is to occur in the generated BNF grammar. A kept-
terminal is replaced by a generated nonterminal. This
nonterminal always causes a tree-building action to occur
which generates a leaf whose node name is as specified in
the token translation rule for that kept-terminal.

2.4.1.1•2. Nonterminals

Syntax

A nonterminal is a sequence of letters and digits, the
first of which is a letter.

Examples

A TEMP TEMP1 B3B

Semantics

A nonterminal becomes one of the nonterminals in the
generated BNF grammar.

* - - " - " - - *. ' ,* . " * *'- . - "" - . . " " -* . . " -* -

-9

2.4.1.2. Operations

Syntax

Let A, B, and C be TREGRM regular expressions.

Concatenation : A B C

Parenthesization : (A)

Repetition : A+

List Repetition : A // B

Example

"NAME"6 I=I "INTEGER" / ,'

Semantics

A concatenation is mapped directly into the BNF rule.

A parenthesized expression of the form, "(reg exp)", is
replaced by a generated nonterminal, "dummy", where dummy is
defined as

dummyA -> regexp

A repetition, "A+", is replaced by a generated
nonterminal, "dummyA", where dummyA is defined as

dummyA
-)A

-> dummyA A

A list repetition, "A i B", is replaced by a generated
nonterminal, "dummyA", where dummyA is defined as

dummyA
-> A
- dummyA B A

- 10 -

2.4.2. Tree-Building Actions

Syntax

A tree-building action is a node name, optionally
surrounded by parentheses or followed by a question mark.

Examples

"NAMEND" "PLUSND"? ("SUBRND")

Semantics

The node name specifies the name of the node that is to
be generated when the corresponding alternative in the BNF
grammar is reduced.

If the node name is followed by a question mark, the
node is not to be generated if it would receive exactly one
son. This action is useful if it is desireable that the
common nesting of "expression", "term", "factor", and
"primary" be flattened out of the tree whenever possible.

If the node name is to be enclosed in parentheses, the
node is generated, and then the subtree rooted at that node
is written out to a data file, and the subtree is replaced
in primary memory by a single node with a flag indicating
that the sons of the node have been written out to the data
file. This action is useful if a sequence of parse trees
for the logical units of the program are desired, or if the
entire parse tree would not fit in available primary memory.
The logical unit numbers of the files to which the parse
trees are to be sent can be set by a call of the form

CALL TRETAB (SYMTAB, PRSTAB)
where SYMTAB and PRSTAB are integer variables. Two logical
unit numbers are specified since it is feasible to send the
parse trees and the corresponding symbol tables to different
files, although this would not usually be done.

3. THE COMPILER-~-*.

The REGM copilr cosiss of350 lins o stadar
ANS FOTA oe'I diin teei ropo hr

The TREGilrM compier wonist fil3s00 lie of stanramd

and the tables produced by the FSCAN compiler , and produces
five output files - a listing file annotated with the number
of the first token on each line, a file containing the
tables for driving the lexical analyzer interface and the
tree builder, a file containing the generated BNF grammar, a
file containing tables specifying the node name to internal
integer mapping, and an errors file describing any errors in
the input. The files are associated with the FORTRAN
logical unit numbers five, seven, six, eight, nine, ten, and
zero respectively.

The compiler contains six processing modules that
perform the following tasks:

3.1. Lexical Analysis, Syntactic Ana:lysis, and Tree
Construction

The input is read and all syntactic errors are
reported. If the input is syntactically correct, a parse
tree corresponding to the input grammar is built, otherwise
processing stops after the entire input has been scanned for
syntactic correctness.

3.2. Lexical Interface Verification

r The following errors are detected and reported:

(1) A token translation rule for the token type has already
been specified.

(2) The token type specified in a token translation rule
does not occur in the FSCAW program.

If any of the above errors occur, processing is halted
following the completion of the lexical interface
verification phase.

3.3. Generation of the IiNF Grammar

The following errors are detected and reported:

-12-

(3) A node name is used but not declared.

(4) A terminal is used as a deleted-terminal, but was
defined as a kept-terminal.

(5) A terminal is used as a kept-terminal, but was defined

as a deleted-terminal.

(6) The rule is too complex, rewrite with fewer operators.

(7) The terminal was declared, but not used.

(8) The nonterminal was used in the right hand side of a
rule, but not declared in the left hand side of any
rule.

If any of the above errors occur, processing is halted
following the completion of the BNF generation phase.

3.4. Generation of Lexical Interface Tables

3.5. Generation of Tree-Building Tables

3.6. Generation of Node Name Map! Tables

to.

- 13-

4. USING THE COMPILER

With the standard version of the TREGRM compiler, the
lexical analysis is specified by an FSCAN program and the
parser generator is the LR compiler. The FSCAN compiler and
LR compiler read in from logical unit 5, write a listing
file to logical unit 6, write the generated tables to
logical unit 7, and write error messages to logical unit 0.

With this version, a parse-tree generator can be
produced as follows
(assume that the FSCAN program is named 'lang.fsi' and that
the TREGRM program is named 'lang.tgi')

ASSIGN lang.fsi Channel 5
ASSIGN lang.fsl Channel 6
ASSIGN lang.fst.f Channel 7
ASSIGN lang.fse Channel 0
RUN fscan compiler
ASSIGN lang.tgi Channel 5
ASSIGN lang.fst.f Channel 7
ASSIGN lang.tgl Channel 6
ASSIGN lang.tgt.f Channel 8
ASSIGN lang.pgi Channel 9
ASSIGN lang.tgt2.f Channel 10
ASSIGN lang.tge Channel_0
RUN tregrmcompiler
ASSIGN lang.pgi Channel 5
ASSIGN lang.pgl Channel 6
ASSIGN lang.pgt.f Channel 7
ASSIGN lang.pge Channel_0
RUN lr_compiler

The four FORTRAN source files, lang.fst.f, lang.tgt.f,
lang.pgt.f, and lang.tgt2.f, combined with a standard
driver, will generate a parse tree from an input stream of
source text.

- 14-

5. THE STANDARD DRIVER

The standard driver is invoked by a single call of the
form

CALL PARSER (ITREE)
where ITREE is a result parameter pointing to the root of
the generated parse tree. The parse tree consists of a set
of nodes. Every node has a name (one of the names specified
in the "node names" section of the tregrm program specifying
that parse tree). Every parse tree node is related to an
ordered set of zero or more parse tree nodes, which are
called the "sons" of the node. Every node is the son of
some other node, except for the root which is the son of no
node. A node that has no sons is called a "leaf". Each
leaf may contain a "symbol", which is a string of characters
obtained from the source text for which the parse tree was
built.

An example of a parse tree woulu be a set of three
nodes, Nodel, Node2, and Node3. The source text from which
the parse tree was built is

XVAL = 134

The tregrm program used to specify the parse tree is

SCA14NER
"Variable" = SCNNAM => "NAME"
"Integer" = SCNINT => "INTEGR"

= SCNEQL
NODES

"ASSIGN" "NAME" "INTEGR"
RULES

AssignStatement -> "Variable" '=' "Integer" => "ASSIGN"

The names of Nodel, Node2, and Node3 are ASSIGN, NAIE, and
INTEGR, respectively. The root of the parse tree is Nodel.
Nodel has two sons - the first son is Nodel and the second
son is Node2. Node2 and Node3 have no sons, and therefore
are leaves. The symbol contained by Node2 is "XVAL" and the
symbol contained by Node3 is "134".

Two parameterless integer functions are available to
determine how many errors occurred during parsing

INTEGER FUNCTION GTRERR ()
INTEGER FUNCTION GTFERR ()

where GTRERR returns the number of recoverable errors (parse
tree was built), and GTFERR returns the number of fatal
errors (parse tree could not be built).

The following functions are available for accessing the
generated parse tree and the symbols associated with leaves
of the parse tree

11
INTEGER FUNCTION PTNMSN (NODE)

Mnemonic
Parse-tree-node number of sons.

Input Parameters
NODE(integer) - a parse tree node.

Result :
The number of sons of the node, NODE.
If NODE is not a valid node, -1 is returned.

INTEGER FUNCTION PTISON (I, NODE)

MnemoniJc
Parse tree node ith son.

Input Parameters
I(integer) - the index of the node desired

(I.GE.l) and (I.LE.PTNMSN (NODE))

NODE(integer) - a parse tree node.
Result

The parse tree node that is the I'th son of node, NODE.
If I is not it the correct range or NODE is not a valid node,
-1 is returned.

INTEGER FUNCTION PTNDTP (NODE)

Mnemonic
Parse tree node type.

Input Parameters
NODE(integer) - a parse tree node.

Result
The type (name) of the parse tree node.
If NODE is not a valid node, -1 is returned.

LOGICAL FUNCTION PTISSM (NODE)

Mnemonic
Parse tree node has a symbol.

Input Parameters
NODE(integer) - a parse tree node.

Result
TRUE iff the node, NODE, has an associated symbol.
(Can only be true for leaves.)
If NODE is not a valid node, .FALSE. is returned.

INTEGER FUNCTION PTSYMB (NODE)

Mnemonic
Parse tree node symbol.

Input Parameters

- 16 -

NODE(integer) - a parse tree node.
Result

The symbol of the node, NODE.
If NODE is not a valid node or PTISSM (NODE) returns .FALSE.,
-1 is returned.

INTEGER FUNCTION SYMLEN (SYMBOL)

Mnemonic
Get the length of a symbol.

Input Parameters
SYMBOL(integer) - a symbol.

Result
Length of the symbol, SYMBOL (number of characters).
If SYMBOL is not a valid symbol, -1 is returned.

INTEGER FUNCTION SYMCHR (SYMBOL, I)

Mnemonic
Get the Ith character of a symbol.

Input Parameters:
SYMBOL(integer) - a symbol.
I(integer) - the index of the character desired.

(I.GE.1) and (I.LE.SYMLEN (SYMBOL))
Result

The Ith character of the symbol, SYMBOL,
stored in Al format.
If I is not in the correct range or SYMBOL is not a valid symbol,
-1 is returned.

- 17 -

References

[1] Geoffrey M. Clemm, FSCAN83 Report and User's Manual,

Univ. of Colorado Tech. Report, #CU-CS-248-83, June,

1983.

[2] Charles Wetherell and Alfred Shannon, "LR Automatic
Parser Generator and LR(1) Parser" IEEE Transactions on

Software Engineering, Vol SE-7#3, May 1981, p.274.

[3] Geoffrey M. Clemm, FSCAN83 Report and User's Manual,

Univ. of Colorado Tech. Report, #CU-CS-248-83.

[4] Stephen C. Johnson, "YACC - Yet Another Compiler-
Compiler", Bell Lab. Computing Science Tech. Rept. #32,
July 1975.

de

- 18-

Appendix A:

Machine Dependencies in the TREGRM compiler

1. Machine Dependent Constants

1.1. NBTPWD

NBTPWD in /NBTPWC/ is the number of bits in a machine
word.

2. Machine Dependent Primitives

2.1. INTEGER FUNCTION INTGER (CHAR)

Input:
CHAR contains a character stored in 1H (or Al) format.

Result:
The ASCII code for the character, CHAR (an integer
between 0 and 127).

2.2. INTEGER FUNCTION CHRCTR (INT)

This is the inverse of the INTGER function.

2.3. INTEGER FUNCTION DIG (CHAR)

Input:
same as INTGER

Result:
If the character is a digit the result is the integer
value of the digit (0-9); otherwise the result is -1.

2.4. INTEGER FUNCTION IAND (I1,I2)
INTEGER FUNCTION IOR (I.-,I2J
INTEGER FUNCTION INOT (Il)

These functions return the result of the bitwise
logical operation of AND, OR and NOT, respectively.

2.5. INTEGER FUNCTION HOLCHR (HCONST,ICHAR)

Input:
HCONST is a Hollerith constant of the form
nHc lc_2...c n where n is an unsigned positive integer
and c i is a character, i=l..n. ICHAR is an integer
between 1 and n.

Kesult:
HOLCHR(HCONST,i) will return c i, stored in Al or Ili
format.

-19-

2.6. INTEGER FUNCTION LRS (IVAL, ICOUNT)
-- INTEGER FUNCTION LLS (IVAL, ICOUNT)

LRS and LLS return the logical shift (end-off, zero-
fill), right and left respectively, of ICOUNT binary
positions of the value, IVAL.

- 20 -

Appendix B:
Machine Dependencies in the TREGRM Standard Driver.

The following machine dependent primitives are
required:

1. INTEGER FUNCTION INTGER (CHAR)

2. INTEGER FUNCTION CHRCTR (INT)

3. INTEGER FUNCTION DIG (CHAR)

3. INTEGER FUNCTION HOLCHR (HCONST, ICHAR)

4. INTEGER FUNCTION LRS (IVAL, ICOUNT)

5. INTEGER FUNCTION LLS (IVAL, ICOUNT)

These routines are described in Appendix A.

ILI

-21

Appendix C
Examples of TREGRM Programs

Following are two complete TREGRM programs. They
describe syntactic analyzers for the TREGRM language and
FORTRAN-77 respectively.

-22 -

#THIS IS THE TREGRM PROGRAM USED TO CREATE THE PARSE TREE
#GENERATOR FOR THE TREGRM COMPILER.

SCANNER
"NAME's = IDNTFR => "NAME"
"DSTRNG" = DSTRNG => "DSTRNG"
"KSTRNG' = KSTRNG => "KSTRNG"

SCREENER

('SCANNER' 'SCREENER' 'NODES' 'RULES'

=(IDNTFR OPRATR DELMTR)

NODES
"PROGRM" "SCANNR" "NONLDF" "LEAFD?" "SCRNR"
"KEYWDS" "STOKNS" "NODES"s "RULES" "RULE"s
"ALTLST" "ALTRNT" "#SEQ"l "LIST" "PLUS"
"OPTNAL" "OUTNOD"s "NAME" "USTRNG" "KSTRNG"l

RULES
TREGRM

-SCANR SCRNR NODS RULS => "PROGRM"
-SCANR NODS RULS => "PROGRM"

SCANR
-'SCANNER' LEXDEFN+ => "SCANNR"

LEXL)EFN
-"DSTRNG" '=' "1NAME"1 => "NONLDF"
->"KSTRNG" '=' "NAME" @=>' "lKSTRNG"1

=> "LE.AFDF"
SCRN R

-'SCREENER' SCRNKWDS ''SCRNTKNS

=> "1SCRNR"s
SCRNKWDS

-'(1 "IDSTRNG"0+ ') '=> "KEYWDS";
SCRNTKNS

-> '"NAME"+- '='> "STOKNS"
NODS

-'NODES' "KSTRNG"+ => "NODES"s
RULS

* >'RULES' RULE+ => "RULES"
RULE

-"NAME" ALTLST ';'> "RULE"
ALTLST

-ALTRNT+ => "ALTLST"
ALTRNT

->'-'EXPR => "ALTRNT"

-'-'EXPR TRCESPEC => "ALTRNT"

3 ~ EXPR
-TERM+ => "SEQ"1?

T ERMtv
-ELMNT 'I'ELMNT => "LIST"

~j~f~f~+'> "PLUS"

-23 -

C LtNT
-> 'VEXPR)

-> "KSTRNG"
-> "DSTRTG"

TREESPEC
-> >'NODNAM

-) =>NODNAM ?=> "OPTNAL"
-> ' ('NODNAM => "OUTNOD"

NODNAM
-> KSTRNG"

- 24 -

SCANNER
"INTCNST" = DCONST => "ICONST"

"NAME" = NAME => "NALE'"

"LGCLCNST" = LCONST => "LCONST"

"REALCNST" = RCONST => "RCONST"

"DBLPCNST" = DPCNST => "DPCNST"

"EDITDSC" = FIELD => "FMTFLD"
"STRCNST" = SCONST => "SCONST"

"HOLCNST" = HCONST => "HCONST"

'LPAREN' = LPAREN
'RPAREN' = RPAREN
'EQV' = EQV
NEQV' = NEQV
'OR' = OR
'AND' = AND
'NOT' = NOT

'LT = LT

'LE' = LE

'EQ = EQ

'NE = NE

'GTl = GT
'GE = GE

'DBLSLASH' = CONCAT
'DBLSTAR' = DBASTR
'STAR' = ASTRSK
'SLASH' = SLASH

'PLUS' - PLUS

'MINUS' = MINUS
'COMMA' = COMMA
'EQUALS' = EQUALS
'COLON' - COLON

'EOS' = EOS
'END' = KEND
'PROGRAM' = KPROGR
'FUNCTION' = KFUNCT

'INTEGER' = KINTEG

'REAL' = KREAL
'DOUBLE' = KDOUBL
'PRECISION' = KPRECI
'COMPLEX' = KCOMPL

'LOGICAL' = KLOGIC
'CHARACTER' = KCHARA

'SUBROUTINE' = KSUBRO

'ENTRY' = KENTRY

'BLOCK' - KBLOCK
'DATA' - KDATA
'DIMENSION' - KDIMEN
'o COMMON' = KCOMMO
'IMPLICIT' - KIMPLI

'PARAMETER' - KPARAM
'EXTERNAL' - KEXTER

'INTRINSIC' = KINTRI
'SAVE' - KSAVE

* '. .

-25 -

'ASSIGN' =KASSIG
'GO' KGO
'TO' =KTO
'IF' KIF
'THEN' =KTHEN
'ELSE' = KELSE
'DO' = KDO
'CONTINUE' = KCONTI
'STOP' = KSTOP
'PAUSE' = KPAUSE
'WRITE' = KWRITE
'READ' = KREAD
'PRINT' = KPRINT
'OPEN' = KOPEN
'CLOSE' = KCLOSE
'INQUIRE' = KINQUI
'BACKSPACE' = KBACKS
'ENDFILE' = KENDFI
'REWIND' = KREWIN
'FORMAT' = KFORMA
'CALL' = KCALL
'RETURN' = KRETUR
'EQUIVALENC' = KEQUIV

NODE S
"F? 7PRG" "PRGUNT"1 "LABLD"s "END" "1PROG" lIFUNC"l "INTGR"
"REAL" "DBLPRC" "COMPLX"l "LOGICL" "1CHRCTR" "LIST" "ISUBR"l
"ASTRSK" "ENTRY" "BLKDTA" "DIMINSN" "ARDCL" "ARDIMS" "ARD IM"1
"DARD IM"s "EQVLNC"l "EQVSET"l "COMMON" "BLNKCM" "1LBLDCM"1 lCBI TMS"l
"TYPE" "DCLITS" "CHRLEN" "IMPLCT" "IMPDCL" "CHRRNG"@ "PARMTR"
"P RMDCL" "EXT RNL"l "I NTRN" "SAVE"s "CBLKNM"* "DATA" "DTADCL"
"DTAITS" "DTAVLS" "MULTDV" "NEG" "DIDLST" "DOSPEC" "ASGN"
"ASSIGN" "ASORSF"s "AOSDEF"1 "GOTO"s "CeMGOTO" "ASGOTO" "LBLLST"
"ARTHIF" "AILBLS" "'LOGIF" "IFTUEN" "ELSEIF" "ELSE" "ENDIF"
"DO" "CNTNU" "STOP" "PAUSE" "WRITE" "READ"1 "PRINT"
"CILIST" "EQUALS"s "CONCAT"s lIOIMvDL" "OPEN" "CLOSE" "INQUIR"1
"BCKSPC" "ENDFIL" "REWIND" "FORIVIAT" "REPEAT" "SLASH" "COLON"

I: CALL"l "LBLARG" " RETU RN " "LQV" "NEQV" "gOR"I "AND"
K "NQT" "lLT"l ""E EQ"l "NE" "GT"l "GE"l

"PLUS"1 "MINUS" "fPos"t "MLTPLY" "DIVIDE" "EXPONT" "SPAREN"
"CCONST" "SUBSTR"1 "AOFREF" "'ARGLST" "ARELM" "SSSPEC" "DEFALT"
"ICONST" "NAME" "LCONST" "RCONST" "DPC NST" "FMTFLD" "HCONST"
"SCONST" "LABEL",

RULES
F77PRG ->PRGUNIT+ => "F77PRG"
PRGUNIT -)BODYSTMT+ ENDSTMT => "PRGUNT"

-ENDSTMT => "PRGUNT"oi
BODYSTMT ->LABEL STMT 'EOS' => "LABLD"

-STMT 'EOS'
-~LABEL FORMAT 'EOS' => "LABLL)"

ENDSTMT ->LABEL END 'EOS' => "LABLD"
->END 'EOS'

- 26 -

END -> 'END' => "END"
STMT - PROG

-> FUNC
-) SUBR
- BLKDTA
- ENTRY
- PARM
- IMPL
-> DATA
-> DIM
-> EQUIV
-> COMMON
-> TYPE
-> EXTRNL
-> INTRNSC
-> SAVE
-> DO
-> LOGIF
-> IFTHEN
-> ELSIF
- ELSE
-> ENDIF
- ASGN
- ASGNORSF
-> GOTO
-> ARTHIF
-> CNTNU
- STOP
- PAUSE
- READ
-> WRITE
-> PRINT
-> RWND

-> BKSPC

-> ENDFIL
-> OPEN
- CLOSE
-> INQUIRE
-> CALL
- RETURN

PROG -> 'PROGRAM' "NAME" => "PROW'
FUNC -> FUNCPREFIX "NAME" FPLIST => "FUNC"
FUNCPREFIX -> TYP 'FUNCTION'

-> 'FUNCTION' => "DEFALT"
TYP -> 'INTEGER' => "INTGR"

-) 'REAL' => "REAL"
- 'DOUBLE' 'PRECISION' => "DBLPRC"
-> 'COMPLEX' => "COMPLX"
-> 'LOGICAL' => "LOGICL"
-> 'CHARACTER' => "CHRCTR"
-> 'CHARACTER' 'STAR' LENSPEC => "CHRCTR"

FPLIST -> 'LPAREN' "NAME"//'COMMA' 'RPAREN' => "LIST"
-, 'LPAREN' 'RPAREN'

"do " , • .. ,

-27 -

SUBR -> 'SUBROUTINE' "NAME" => "SUBR"1
>'SUBROUTINE' "NAME" SPLIST => "SUBR"0

SPLIST ->'LPAREN' 'RPAREN'
->'LPAREN' SPARM//'COI-,MA' 'RPAREN' => "LIST"

SPARM -> NAME"l
-'STAR' => "ASTRSK"

ENTRY ->'ENTRY' "NAME" => "ENTRY"
> 'ENTRY' "NAME" SPLIST => "ENTRY"

BLKDTA ->'BLOCK' 'DATA' => "BLKDTA"
-'BLOCK' 'DATA' "NAME"s => "BLKDTA"

DIM -'DIMENSION' ARDCL//'COMMA'> "DIMNSN"
ARDCL ->"NAME" ARDIMLST => "ARDCL";
ARDIMLST ->'LPAREN' ARDIMS 'RPAREN' => "ARDIMS"
ARDIMS ->ARDIM 'COMMA' ARDIMS

->ARDIM

->DARDIM

ARDIM ->DIMBD 'COLON' DIMBD => "ARDIM"
->DIMBD => "1ARDIM"1

DA RD IM - DIMt3D 'COLON' 'STAR' => "DARDIM"
->'STAR' => "DARDIM"

DIMBD ->AEXPR

EQUIV ->'EQUIVALENC' EQVSETr//'COMMA' => "EQVLNC"
EQVSET ->'LPAREN' EQVENT//'COMMA' 'RPAREJ' => "EQVSET"
EQ VENT >"AE

->ARELM'

->SUBSTR

COMON->'COMMON' CLST=> "COMMON"s
->'COMMON' BCILST CBLKLST => "COMMON"
->'COMMON' BCILST => "COMMON"

CBLKLST ->CBLK+;

*CBLK ->'DBLSLASH' CBILST => "BLNKCM"
-'SLASH' "NAME"s 'SLASH' CBILST => "LBLDCM"

BCILST -)CBILST => "BLNKCNI"
CBILST ->CBITMS => "CBITvlS"
CBITMS ->CBITM 'COMMA' CBITMS

->CBITM 'COMMA'
->CBITM

CBITM ->"NAME"s

->ARDCL

TYPE ->TYP DCLITS => "TYPE"
-CHRTYP 'COMMA' DCLITS => "0TYPE"

CHRTYP ->'CHARACTER' 'STAR' LENSPEC => "CHRCTR"
DCLITS -,DCLITM//'COMMA' => "DCLITS"
DCLITM ->DCLVAR

->DCLVAR 'STAR' LENSPEC => "CHRLEN'"
DCLVAR -> NAME"l

->ARDCL

IMPL ->'IMPLICIT' IMPDCL//'COMMA' => "IMPLCT"
IMPDCL -)TYP 'LPAREN' C1IRRNG//'COMMA' 'RPAREN'

=> "IMPDCL"
CHRRNG ->CHAR 'MINUS' CHAR =>"CHRRNG"

->CHAR

CHAR -)"NAME"s

-28 -

LENSPEC -'LPAREN' 'STAR' 'RPAREN' >"ASTRSK"

->"INTCNST"

-'LPAREN' AEXPR 'RPAREiN'
PARM ->'PARAMETER' 'LPAREN' PRMDCL//'COMMA' 'RPAREN'

"PARI4TR"
PRMDCL ->"NAME" 'EQUALS' EXPR => "PRMDCL"
EXTRNL ->'EXTERNAL' "NAME"//COMMA' => "EXTRNL"
INTRNSC - 'INTRINSIC' "NAME"//'COMMA' => "INTRN"t
SAVE ->'SAVE' => "1SAVE"l

-'SAVE' SAVITM//'COMMA' => "SAVE~"
SAVITM -> NAME"l

-'SLASH' "NAME" 'SLASH' => "CBLKNM"
DATA ->'DATA' DTALST => "DATA"
DTALST ->DTADCL

-DTALST DTADCL
-DTALST 'COMMA' DTADCL

DTADCL ->DTAITS 'SLASH' DTAVLS 'SLASH' => "DTADCL"
DTAITS - DTAITM//'COMMA' => "DTAITS"
DTAVLS ->DTAVAL//'COMMA' => "DTAVLS"
DTAITM ->VAR

->DIDLST

- - VAR -"NAME"

-ARELM

-SUBSTR

DTAVAL ->DVCOUNT 'STAR' DVVAL =>"MULTDV"

->DVVAL

DVCOUNT ->"INTCNST"

->"NAME"1

DVVAL ->CONST

-'PLUS' ARTHCNST
-'MINUS' ARTHCNST => "INEG"

1> NAME"l
* DIDLST ->'LPAREN' DIDITS 'COMMA' DOSPEC 'RPAREN'

=> "DIDLST"
DIDITS ->DIDIT~iV//'COMMA'

DIDITM ->ARELM

->DIDLST

DOSPEC ->"NAME" 'EQUALS' AEXPR 'COMMA' AEXPR
=> "DOSPEC"

-"NAME" 'EQUALS' AEXPR 'COMMA' AEXPR 'COMMA' AEXPR
=>"DOSPEC"

ASGN ->"NAME" 'EQUALS' EXPR => "1ASGN"1
-SUBSTR 'EQUALS' FACTOR => "1ASGN"l
-'ASSIGN' LABEL 'TO' "NAME" => "ASSIGN"

ASC3NORSF ->ARORSFD 'EQUALS' EXPR => "ASORSF"1
ARORSFD -'"NAME" 'LPAREN' ARGLIST 'RPAREN' => "AOSDEF"
GOTO ->'GO' 'TO' LABEL => "COTO"

-'GO' 'TO' 'LPAREN' LBLLST 'RPAREN' AEXPR
=>"CMGOTO"

-~'GO' 'TO' 'LPAREN' LBLLST 'RPAREN' 'COMMA' AEXPi-
=> "CMGOTO"

~ :~ :~: ::~::'LPAREN' LBLLST)RT$MRE GOTO-

-29-

=>"ASGOTO"
-'GO' 'TO' "NAME"s 'COMMA' 'LPAREN' LBLLST 'RPAREN'

=>"ASGOTO"

LBLLST ->LABEL//'COMMA' => "LBLLST"

ARTHIF ->'IF' 'LPAREN' EXPR 'RPAREN' ARIFLABELSj
-> LBELaC~MA~LABL 'OMM' LBEL=> "ARTHIF"

ARIFLABELS LAE CMA AE CMA AE > "AILBLS"
LOGIF ->'IF' 'LPAREN' EXPR 'RPAREN' STMT => "LOGIF"

IFTHEN - 'IF' 'LPAREN' EXPR 'RPAREN' 'THEN' => "IFTHEN"V
ELSIF ->'ELSE' 'IF' 'LPAREN' EXPR 'RPAREN' 'THEN'

=> "ELSEIF"
ELSE -)'ELSE' => "ELSE"
ENDIF ->'END' 'IF' => "ENDIF"
DO ->'DO' LABEL 'COMMA' DOSPEC => "@DO"f

->'DO' LABEL DOSPEC => "DO"
CNTNU ->'CONTINUE' => "CNTNU"
STOP ->'STOP' => "1STOP"1

->'STOP' SPVAL => "STOP"
PAUSE ->'PAUSE' => "PAUSE"

->'PAUSE' SPVAL => "PAUSE"
SPVAL ->"IN~TCNST"

->"STRCNST"

WRITE ->'WRITE' CILIST => "WRITE"
->'WRITE' CILIST UUTPUTLIST => "WRITE";

READ ->'READ' XFMTID => "READ"
->'READ' 'LPAREN' CIITEM 'RPAREN' => "1READ"l
->'READ' XCILIST => "READ"1
->'READ' XFMTID 'COMMA' INPUTLIST => "READ"
-'READ' 'LPAREN' CIITEM 'RPAREN' 'COMMA' INPUTLIST

=> "1READ" 11
->'READ' CILIST INPUTLIST => "READ"

PRINT ->'PRINT' CIITEM => "PRINT"
->'PRINT' CIITEM 'COMMA' OUTPUTLIST => "PRINT";

CILIST ->'LPAREN' CIITEM 'RPAREN' => "CILIST"
->XCILIST

CIESPEC ->"NAME" 'EQUALS' CIITEM => "EQUALS"
CIITEM ->EXPR

->ASTRSK

ASTRSK ->'STAR' => "ASTRSK"
XFMTID ->ASTRSK

->"INTCNST"

-> STRCNST"
"NAME"s

->AOFREF

->SUBSTR

-SXFMTID 'DBLSLASH' EXPR => "CONCAr"
#CIITEM USED TO PREVENT REDUCE CONFLICT

-'LPAREN' CIITEM 'RPAREN' 'DBLSLASH' EXPR
=>"CONCAT"

SXFI4TID ->"STRCNST"

14 NAME"
-,AOFREF

-SUBSTR

-30-

XCILIST ->'LPAREN' CIESPECS 'RPAREN' => "CILIST"
-)'LPAREN' CIITEM. 'COMMA' CIESPECS 'RPAREN'

=>"CIELIST"
-'LPAREN' CIITEM 'COMMA' CIITEM 'RPAREN'

=>"CILIST"
-'LPAREN' CIITEM 'COMMA' CIITEM 'COMMA' CIESPECS 'RPAREN'

=>"CILIST"
CIESPECS -)CIESPEC//'COMMA'

OUTPUTLIST -)OUTPUTITEM//'COMMA'

- . # SEE COMM4ENT FOR COMPLEX CONSTANT
OUTPUTITEM,- EXPR

->'LPAREN' OUTPUTLIST 'COMMA' DOSPEC 'RPAREN'
=>"IOIMDL"

INPUTLIST ->INPUTITEM//'COMMA'

INPUTITEM ->VAR

->'LPAREN' INPUTLIST 'COMMA' DOSPEC 'RPAREN'
=>"IOIMDL"

OPEN ->'OPEN' CILIST => "OPEN"
CLOSE ->'CLOSE' CILIST => "CLOSE"
INQUIRE ->'INQUIRE' 'LPAREN' INQSPECS 'RPAREN'

=>"INQUIR"
->'INQUIRE' 'LPAREN' CIITEM 'RPAREN' => "lINQUIR"f
'>INQUIRE' 'LPAREN' CIITEM4 'COMMA' INQSPECS 'RPAREN'

=>"INQUIR";
INQSPECS -)INQSPEC//'COMMA';

INQSPEC ->"NAME" 'EQUALS' EXPR => "EQUALS";
*BKSPC ->'BACKSPACE' FSPEC => "IBCKSPC"

ENDFIL ->'ENDFILE' FSPEC => "ENDFIL"
RWND ->'REWIND' FSPEC => "REWIND"
FSPEC ->CIITEM

-'LPAREN' CIESPECS 'RPAREN' => "CILIST"
FORMAT -,'FORMAT' FRMT

-'FORMAT' 'LPAREN' 'RPAREN' => "FORMAT"
FRMT ->'LPAREN' FMTITEM+ 'RPAREN' => "FORMAT"
FMTITEM ->"EDITDSC"

->"STRCNST"

->"HOLCNST"

->FRMT

-"INTCNST" FRMT => "REPEAT"
-'COMMA'

-'SLASH' => "SLASH"s
-'COLON' => "COLON"

CALL ->'CALL' "NAME"s > "CALL"
-'CALL' "NAME" 'LPAREN' 'RPAREN' => "CALL"

$) CALL' "NAME" 'LPAREN' ARG//'COMMA' 'RPAREN'
=> "CALL"

ARG -)EXPR

-'STAR' LABEL => "LBLARG"
RETURN ->'RETURN' => "RETURN"

-'RETURN' AEXPR => "RETURN"
EXPR ->EXPR 'EQV' LOGEXPR =>"EQV"

- IXPR 'NEQV' LOGEXPR => "1NEQV"
-~LOGEXPR

311

LOGEXPR ->LOGEXPR 'OR' LOGTERM =>"OR"2

->LOGTERM

LOGTERM ->LOGTERM 'AND' LOGFACTrOR => "AND"
-LOGFACTOR

LOGFACTOR ->'NOT' LOGPRIM => "NOT"
->LOGPRIM

LOGPRIM ->AEXPR 'LT' AEXPR => "LT"1
-AEXPR 'LE' AEXPR => "LE"
->AEXPR 'EQ' AEXPR => "aEQU"
->AEXPR 'NE' AEXPR => "NE"1
->AEXPR 'GT' AEXPR => "GT"1
->AEXPR 'GE' AEXPR => "GE"s
->AEXPR

AEXPR ->AEXPR 'PLUS' ATERM => "1PLUS"1
-AEXPR 'MINUS' ATERM => "MINUS"
->'PLUS' ATERM => "oPOS"

->'MINUS' ATERM => "NEG"
->ATERM;

ATERM ->ATERM 'STAR' FACTOR => "MLTPLY"
-ATERM 'SLASH' FACTOR => "DIVIDE"
-FACTOR

FACTOR ->PRIMARY 'DBLSTAR' FACTOR => "EXPONT"
-PRIMARY 'DBLSLASH' FACTOR => "CONCAT"
-PRIMARY

PRIMARY ->CONST

-> NAME"
->AOFREF

->SUBSTR

->'LPAREN' EXPR 'RPAREN' >"SPAREN"

CONST ->ARTHCNST

->"STRCNST"

->"HOLCNST"

->"LGCLCNST"

ARTHCNST ->"INTCNST"

-"REALCNST"

->"DBLPCNST"

#PRINT 5,(3,2) .. PRINT 5,(3,2,I=1,10)
-~'LPAREN' OUTPUTLIST 'COMMA' ARTHCNST 'RPAREN'

=>"CCONST"
SUBSTR -ARELM SSSPEC ="SUBSTR"

>"NAME" SSSPEC => "SUBSTR"
AOFREF ->"NAME" 'LPAREN' ARGLIST 'RPAREN' => "AOFREF"
ARGLIST EXR/->A => "ARGLST"
ARELM ->"NAME" 'LPAREN' ARGLIST 'RPAREN' => "ARELM"
SSSPEC ->LSSSPEC 'COLON' RSSSPEC => "SSSPEC"
LSSSPEC ->'LPAREN' AEXPR

-~'LPAREN' => "DEFALT"
RSSSPEC -AEXPR 'RPAREN'

>) 'RPAREN' => "DEFALT"
LABEL -'"INTCNST" => "LABEL"

. .* . . .I w ON

4w

AA

M.- i .

tfit

V ,,

